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Abstract

We present a search for charged Higgs bosons in decays of pair-produced top

quarks in p�p collisions at
p
s = 1:8 TeV using 62:2 pb�1 of data recorded by

the D� detector at the Fermilab Tevatron collider. No evidence is found for

signal, and we exclude at 95% con�dence most regions of the (MH� , tan�)

parameter space where the decay t ! H+b has a branching fraction greater

than 0:36 and B(H� ! ��� ) is large.
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The standard model (SM) relies on the Higgs mechanism for gauge-invariant generation
of particle masses. It contains a single complex scalar doublet �eld, whose only observable
particle is the neutral Higgs boson, H0. At present, no experimental results limit the Higgs
sector to a single doublet. In this Letter, we examine predictions of a two-Higgs-doublet
model that couples one doublet to up-type quarks and neutrinos, and the other to down-
type quarks and charged leptons, as is the case in the minimal supersymmetric extension
of the SM. For this choice of Higgs couplings, avor changing neutral currents are absent
at tree-level [1]. The additional degrees of freedom in this model provide a total of �ve
observable Higgs �elds: two neutral CP-even scalars h0 and H0, a neutral CP-odd scalar
A0, and two charged scalars H�. In what follows, we report on a search for evidence of a
minimal extension of the Higgs sector, in the form of a charged Higgs boson. The relevant
parameters for this study are the mass of the charged Higgs, MH� , and the ratio of the
vacuum expectation values of the doublets, tan �.

In the SM, the primary decay of the t quark is t ! W+b. The addition of the second
Higgs doublet provides the t ! H+b mode, if it is kinematically allowed. If tan� were

larger or smaller by about an order of magnitude than
q
mt=mb, the branching fraction

B(t ! H+b) could then be large, but would decrease as MH� increased. In this analysis,
we assume B(t ! W+b) + B(t ! H+b) = 1. The masses of the three neutral scalars are
assumed to be large enough to be suppressed in H� decays. At tree level, there are no direct
H� couplings to SM vector bosons or to avor changing neutral currents. Therefore, the only
available decays of H� are fermionic, with the coupling proportional to the fermion mass.
For MH� below � 110 GeV, B(H+ ! �+�) � 0:96 for tan� > 2, and B(H+ ! c�s) � 1
for tan� < 0:4. Because of the large coupling to the top quark[2], B(H+ ! t��b ! W+b�b)

becomes important and eventually dominant for tan � <
q
mt=mb at higher values of MH�.

D� has carried out two independent searches for evidence of t! H+b and �t! H��b. An
indirect search, which has been published [3], looked for a decrease in the t�t ! W+W�b�b
signal expected on the basis of the SM. The direct search, reported here, looks for evidence
of the H� through its characteristic decay modes. Direct searches have been carried out by
LEP experiments, and report a combined lower limit on MH� of 77.4 GeV [4]. CDF has
also reported a direct search for H�, setting an upper limit on B(t! H+b) in the range of
0.5 to 0.6 at the 95% con�dence level (CL) for masses in the range 60 to 160 GeV, assuming
B(H+ ! ��� ) = 1 [5].

This analysis uses the same formulation and Monte Carlo (MC) tools as used in the
indirect search by D�. The theory is a leading-order perturbative calculation, thereby
requiring the t ! H+b coupling to be < 1, which limits the validity of our search to 0:3 <
tan � < 150. In addition, the calculation is unreliable for small jmt �MH� j, and for large
decay widths for t and H�. This further limits our search to regions where MH� < 160 GeV
and B(t! H+b) < 0:9.

A direct search for H� is divided naturally into two regions of tan� [6]: (1) small tan �,
where �nal states are dominated by jets, and there is no apparent imbalance in transverse
momentum (ET ), and (2) large tan�, where the main �nal state contains up to two �
leptons and large missing transverse energy (E/T ). Because at small tan � there is much
background from multijet production, we concentrate on large tan � and t�t! � ���� ���+jets
�nal states. The experimental signature for t! H+b is nearly identical to that for t!W+b.
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We therefore rely on the expected increase in absolute yield of � leptons at high tan � for
di�erentiating between the two decay modes.

The data for this analysis were collected using the D� detector [7] during the 1994-1995
run of the Fermilab Tevatron p�p collider at

p
s = 1:8 TeV. For this study, we consider

t�t ! H+H�b�b and t�t ! H�W�b�b decays. Identi�cation of the � relies on its hadronic
decay modes, consisting primarily of one or three charged hadrons in a very narrow jet,
often accompanied by photons from �0 decays, and a �� . There are two b jets per event,
and, when one of the top quarks decays to Wb, there are also two light quark jets, because
we only consider hadronicW modes. The event signature used in our search is therefore jets
+ E/T , with a roughly spherical distribution in the detector, and at least one very narrow
jet. Consequently, we rely on a multijet + E/T trigger to collect the search sample, which
comprises 62:2� 3:1 pb�1 of integrated luminosity (L). To reduce the background, we start
with a set of loose selection criteria and then use a neural network (NN) to make more
restrictive cuts. The loose criteria require that the event have E/T > 25 GeV, at least 4 jets,
each with ET > 20 GeV, but no more than 8 jets with ET > 8 GeV.

We use a feed-forward NN [8] based on jetnet [9], with 3 input nodes, 7 hidden nodes,
and 1 output node. The 3 input variables are the E/T , and two of the three eigenvalues
of the normalized momentum tensor. The NN is trained on both signal (t ! H+b), and
background. The sample used for training the NN on signal, t�t ! H+H�b�b, is generated
using isajet [10], with both Higgs bosons decaying to ��� , and the � leptons decaying to
hadrons and �� . The response of the NN is relatively insensitive to the Higgs mass, we
therefore use only a single value, MH� = 95 GeV. The same NN is also used for classifying
t�t ! H�W�b�b channels, since the eÆciency for this channel is comparable to that of the
training sample.

The primary sources of background are from mismeasured multijet events, and W+ � 3
jet events. We therefore train the NN on multijet background events from data; even if a
H� signal is present in the data, it is expected to be very small, so this sample corresponds
e�ectively to pure background. The W+ jets background is modeled using vecbos [11] for
parton production, and isajet for hadronization. Figure 1 shows the separation achieved
for the Higgs signal relative to our primary source of background from multijet events. The
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FIG. 1. The NN output for t�t! H+H�b�b MC signal and multijet data background. The two

distributions are normalized to the same area.

6



chosen NN cuto� of 0.91, is based on a series of MC experiments used to determine the
maximum charged Higgs search sensitivity. In the event that no signal is found, this also
provides the maximum area in (MH�; tan�) space that could be excluded in our analysis.

After applying the NN selection, we require that events have at least one hadronically
decaying � lepton. The selection used in this analysis follows that of ourW ! ��� study [12].
The principal requirement involves the identi�cation of a single narrow jet in each event

(
q
�2� + �2� � 0:25, where the � correspond to the jet widths in � and �), with 1 to 7 charged

tracks, and jet ET of 10 < ET < 60 GeV in a cone of R =
p
��2 +��2 = 0:5. In addition

to the criteria in Ref. [12], we require that the discriminant �2
b � �2

s > 0, where �2
s is the �

2

determined from a covariance matrix calculated from W ! ��� MC events, and �2
b is the

�2 determined from a covariance matrix based on a background sample of multijet events.
The �2 for the background sample uses the leading jet in each event (ET > 20 GeV).

Because the measured values of �t�t and mt are based on the assumption that B(t !
Wb) = 1, it may be regarded improper to use either in calculating the expected number
of events. For t�t production, we use a QCD calculation giving �t�t = 5:5 pb [13{15]. Any
possible contamination from t�t ! H�W�b�b, would not a�ect the D� mass measurement
by more than 5% for MH� < 140 GeV, therefore we use the value mt = 175 GeV [16,17].
The selection eÆciencies for signal and background are listed in Table I. Combining the
theoretical cross section, mt, and the eÆciencies, the expected numbers of events from SM
sources and the number of events observed in our data are listed in Table II.

Our measurement agrees with the SM, therefore we conclude that there is no evidence
for charged Higgs boson production, and proceed to set a limit on MH� and tan�. If H�

bosons were in fact produced in t�t decays, then the number of t�t ! � + jets events in our
data would have increased at high tan�, because B(H+ ! ��� ) = 0:96 in that region,
while B(W+ ! ��� ) = 0:11. Consequently, in the absence of t ! H+b events, regions of
parameter space where the number of events from H� decay is expected to be large, can
be excluded at high con�dence. To set a limit, we calculate the probability for our data to
uctuate to the expectation from H� sources. Figure 2 shows the number of events observed
in the data, the number expected from SM processes, and the extra number expected from
H� contributions for tan � = 150 and MH� = 95 GeV, as a function of NN threshold.
Our data show agreement with the SM, but above our NN cuto� of 0.91, there is a clear
inconsistency with the hypothesis of excess � production from H� sources.

To calculate the probability that the number of expected events for a particular value

TABLE I. Cumulative eÆciencies (in %) after the three stages of event selection for H� signal

and background. Event types are: (1) t�t ! W�H�b�b, W ! q�q
0

, H ! ��� ; (2) t�t ! H�H�b�b,

H ! ��� ; (3) t�t!W�W�b�b, W ! ��� , W ! q�q
0

; and (4) W+ � 3 jets, W ! ��� , where for all

event types � ! jet.

Event type Loose selection NN > 0:91 � -id

(1) 50:0 � 1:7 18:3� 0:9 5:0� 1:0

(2) 35:2 � 1:6 12:9� 0:9 5:5� 1:0

(3) 45:1 � 2:0 15:7� 1:0 3:8� 0:8

(4) 0:65 � 0:04 0:17 � 0:02 0:04 � 0:01
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TABLE II. Number of SM events expected after all selections.

t�t 1.1� 0:3

W+jets 0.9� 0:3

QCD multijets 3.2� 1:5

Total SM 5.2� 1:6

Observed events 3

of tan � and MH� has uctuated to the number of observed events (nobs), we use the joint
posterior probability density for MH� and tan�, given by

P (MH�; tan�jnobs) /
Z
G(L)

Z
G(nB)

Z
G(A)� P (nobsj�) dA dnB dL; (1)

where G represent Gaussian distributions, nB is the number of expected background events,
and P (nobsj�) is the Poisson probability of observing nobs events given a total expectation
of

�(MH�; tan�) = A(MH� ; tan�) �(t�t)L+ nB; (2)

where A(MH� ; tan�) is the sum of the products of the branching fractions and eÆciencies
from all sources of t�t decay. For a particularMH� , the value of A for any tan� is computed
using leading-order calculations for the branching fractions, and Monte Carlo for determining
eÆciencies. The probabilities from Eq. 1 are then parameterized as a function of tan� for
�xed values of MH�. These parameterized dependences on tan � are �tted as a function
of MH� to obtain P (MH� ; tan�jnobs). This Bayesian posterior probability density [18] for
MH� and tan� is shown in Fig. 3.

The prior probability distribution is assumed to be uniform over the previously discussed
allowed regions of MH� and log(tan�) and zero elsewhere. We further impose a lower
limit on MH� of 75 GeV, to provide an overlap with the limit from the LEP experiments.

NN Cutoff
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FIG. 2. Data superimposed on the number of events expected from standard t�t! �+X decays

and other SM backgrounds (light), and from the addition of H� sources (dark) for tan� = 150

and MH� = 95 GeV, as a function of NN threshold.
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FIG. 3. Surface formed by P (MH� ; tan�jnobs). The ordinate has arbitrary normalization.

The 95% CL exclusion boundary in the (MH� , tan �) plane is obtained by integrating
the probability density P (MH�; tan�jnobs) around a contour of constant P , such that the
volume under the surface enclosed by that contour constitutes 95% of the volume under the
full P (MH�; tan�jnobs) surface. The limits are shown in Fig. 4, along with the results from
the indirect D� search, using the same assumptions. The exclusion boundaries correspond
to regions of parameter space that are < 5% likely. Because the indirect search excludes
simultaneously both large and small tan�, the exclusion contour at high tan � represents
approximately 2.5% of the volume under that posterior probability density surface. Also
shown in Fig. 4 are the frequentist results, wherein a point in the (MH� , tan �) plane
is excluded when P (nobsjMH�; tan�) < 5%, which is related to the posterior probability
through Bayes theorem:

P (MH�; tan�jnobs) = P (nobsjMH�; tan�)P (MH�; tan�)

P (nobs)
(3)

Although the frequentist and Bayesian exclusion contours are shown on the same plot, they
cannot be compared directly, because they represent entirely di�erent probabilities.

In summary, our direct search for charged Higgs bosons in top quark decays shows no
evidence of signal forMH� < 150 GeV. The region of small tan� does not provide � leptons
through couplings to H�, and therefore cannot be excluded. At large tan�, we extend the
exclusion region beyond that of our indirect search. Assuming mt = 175 GeV and �(t�t) =
5.5 pb, tan� > 32:0 is excluded at the 95% CL, for MH� = 75 GeV. The limits are less
stringent at largerMH� , untilMH� = 150 GeV, where no limit can be set. Using the results
of this Letter and those of our indirect search, we exclude B(t ! H+b) > 0:36 at 95% CL
in the region 0:3 < tan � < 150, and MH� < 160 GeV.
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